Big Data – Modebegriff oder Trend?

Im letzten Jahr wurden weltweit 1,8 Zettabyte (1,8 x 1021 Byte) an Daten generiert. Glaubt man Expertenprognosen, so wird sich das Datenvolumen alle zwei Jahre verdoppeln. Das Potential von Big Data ist groß. Durch die automatische Erfassung von Daten, den Siegeszug von Smartphones und die Durchdringung aller Lebensbereiche durch Social Media wird das Datenangebot in Zukunft immer größer werden. Wir haben Dr. Michael May, den Big Data-Experten des Fraunhofer Instituts, interviewt, der uns über Potentiale, Möglichkeiten für Unternehmen und neue Herausforderungen durch Big Data aufklärte.
Personen und Prozesse generieren weltweit immer mehr neue Daten und lassen das Datenvolumen stetig wachsen: 350 Billionen Meter Dokumente, 5 Millionen abgeschlossene Transaktionen pro Sekunde, 500 Millionen Online-Verbindungen. Daten aus Simulationen, Modellberechnungen, Social Media, etc. – die Datenflut wird immer größer. In diesem Zusammenhang liefern auch Facebook-Nutzer mit Kommentaren und „Likes“ wichtige Informationen, die Marktrends vorgeben. Ein anderes Beispiel sind Konsumenten, die ihren Verbrauch über intelligente Stromsysteme managen. IT-Systeme werden von den Datenlawinen regelrecht überrollt und sind mit der Auswertung meist überfordert.
Welche Produkte kauft der Verbraucher von morgen? Welche Dienstleitungen und Services sind bei Zielgruppen gefragt und werden aktuell diskutiert? Und welche Trends kommen zukünftig auf uns zu? Big Data könnte diese Fragen beantworten. Doch ist das Thema mittlerweile auch bei deutschen Unternehmen angekommen und wird es hinreichend wahrgenommen? Oder ist das Thema nur ein Hype, der in naher Zukunft wieder abflauen wird? Dr. Michael May vom Fraunhofer Institut stellte sich unseren Fragen in einem Interview.

Interview mit Dr. Michael May
Experten-Info:
Dr. May leitet seit 1998 die Abteilung Knowledge Discovery am Fraunhofer IAIS, die sich mit den Themen Data Mining, Maschinelles Lernen und Big Data befasst. Er leitet derzeit eine Anzahl von Big Data Projekten in Forschung und Wirtschaft und war für die vom deutschen Wirtschaftsministerium geförderte „Potentialanalyse Big Data in Deutschland“ verantwortlich. Seine Forschungsschwerpunkte sind derzeit die Data-Mining-Analyse von verteilten Data Streams sowie die Analyse von Telekommunikations- und Mobilitätsdaten.
eStrategy: Big Data – Modebegriff oder Trend?
Ganz klar: Beides.
eStrategy: Ab welcher Größenordnung spricht man von Big-Data? Gibt es heutzutage überhaupt noch „Small Data“?
Wenn man von Big Data spricht, denkt man normalerweise an Datenmengen in den Größenordnungen von vielen Tera-, Peta- oder sogar Exabyte. Allerdings ist die Datenmenge (englisch: Volume) nur eines der drei kennzeichnenden Merkmale von Big Data. Die beiden anderen sind die Geschwindigkeit der Datenverarbeitung (Velocity) und die Vielfalt und Heterogenität (Variety) der Datenquellen. Zudem ist die Komplexität der Analyse ein zentrales Kriterium. Was für die eine Analyse, z. B. ein Text-Mining-Verfahren zur Sentiment-Erkennung, „Big Data“ ist, mag für das andere, z. B. eine simple Summenbildung nach Regionen, „Small Data“ sein.
eStrategy: Warum denken Sie ist der Hype um „Big Data“ jetzt so groß?
Der erste Grund ist die Verfügbarkeit immer größerer Datenmengen im Internet, aus Smartphones, aber auch in technischen Prozessen. Ein weiterer wichtiger Grund ist, dass in den letzten Jahren Open-Source-Tools zur Verarbeitung von Big Data breit verfügbar geworden sind, z. B. Hadoop. Sie haben einen gewissen Reifegrad erreicht, so dass sie für viele Unternehmen interessant werden. Und natürlich haben Google, Facebook & Co. gezeigt, wie ganz auf Big Data gebaute Geschäftsmodelle Unternehmen in sehr kurzer Zeit sehr reich machen können. Das beflügelt die Phantasie junger Start-Ups wie auch von Industriegiganten überall in der Welt.
eStrategy: Welche Auswirkungen hat Big Data auf Unternehmen?
Richtig verstanden ist Big Data in erster Linie kein Technologiethema – obwohl es natürlich großen technologischen Sachverstand braucht, um es umzusetzen. Es geht darum, Entscheidungsprozesse in Unternehmen zu verändern und zu automatisieren, indem man sie auf die intelligente, sehr zeitnahe Auswertung von Daten stützt, die im Geschäftsbetrieb anfallen. „Data Driven Enterprises“ heißt hier das Schlüsselwort. So verstanden können die Auswirkungen auf die Unternehmen fundamental sein.
eStrategy: Welche Auswirkungen hat Big Data auf unsere Gesellschaft?
Das beginnen wir gerade erst zu erahnen. Bei dieser Frage kommen ja fast reflexartig Fragen des Datenschutzes hoch. Aber man sollte darüber hinaus die positiven Aspekte, z. B. die Aussicht auf neue datengetriebe Entwicklungen in der Medizin, die Entwicklung energieeffizienterer Verfahren mit den positiven Auswirkungen auf die Umwelt oder auch die Chancen für eine validere Theorienbildung z. B. in der Soziologie, nicht vergessen. Ansätze zu letzterem erleben wir gerade in der Theorie sozialer Netzwerke, wo inzwischen dank Facebook oder Twitter-Daten empirische Quellen vorhanden sind, von denen man vor 15 Jahren nicht einmal träumen konnte.

eStrategy: Bei Fraunhofer waren Sie maßgeblich an der Studie „Potenzialanalyse Big Data in Deutschland“ beteiligt. Welche Hauptergebnisse konnten Sie gewinnen?
Die Potenzialanalyse wurde vom Bundeswirtschaftsministerium im Rahmen des Theseus-Projektes gefördert. Wir haben existierende Business Cases analysiert, Zukunftsworkshops in sechs verschiedenen Branchen und eine Online-Befragung durchgeführt. Zusammengefasst lässt sich sagen: Grundsätzlich ist das Thema in Deutschland angekommen. Über viele Branchen hinweg denken Unternehmen über den Einsatz von Big Data nach. Innovationscenter und Big Data-Task Forces werden überall ins Leben gerufen. Aber es existieren auch Hemmnisse. Neben Problemen des Datenschutzes – ein in dieser Ausprägung sehr deutsches Phänomen – ist insbesondere die mangelnde Vertrautheit mit den neuen Technologien ein Problem. Was gegenwärtig am meisten benötigt wird, sind Orientierungshilfen wie erfolgreiche Use Cases, Best Practices, Lösungsübersichten, aber auch Trainingsmaßnahmen. Das Jahr 2013 wird hier sehr spannend.
eStrategy: Welche Handlungsempfehlungen geben Sie in Richtung Unternehmen?
Jetzt mit Big Data zu beginnen und zu prüfen, wo für das eigene Unternehmen der Mehrwert und die neuen Geschäftsmodelle liegen. Technologisches Know-How aufbauen. Über wahrgenommene Hemmnisse im Datenschutz nicht nur klagen, sondern gegebenenfalls prüfen, wie sich mit datenschutzkonformen Angeboten speziell im deutschen Markt Wettbewerbsvorteile erzielen lassen.
eStrategy: Warum ist es wichtig Personal in diesem Bereich auszubilden?
Mangelnde Expertise wurde in unserer Potenzialanalyse als eines der Haupthemmnisse identifiziert. Ausgebildetes Personal ist gegenwärtig am Markt nicht in ausreichendem Umfang verfügbar. Die neuen Technologien unterscheiden sich oft grundsätzlich von bisherigen Paradigmen z. B. im Bereich der Business Intelligence. Um identifizierte Chancen für das Geschäft wirklich nutzen zu können, ist es deshalb entscheidend, über geeignet qualifiziertes Personal zu verfügen. Neben der rein technischen Expertise ist es dabei wesentlich, eine Generation von Informatikern und Statistikern heranzuziehen, die in der Lage ist, technisch-mathematische Konzepte in Anwendungslösungen zu übersetzen. Das neue Berufsbild, das hierfür gebraucht wird, nennt sich „Data Scientist“. Am Fraunhofer IAIS bieten wir z. B. Schulungen an, um Mitarbeiter in Unternehmen gezielt in dieser Richtung zu qualifizieren.
eStrategy: Gibt es inzwischen Standard-Tools bzw. -Software für den Umgang mit Big-Data oder ist das Ganze zu individuell und speziell für Standardisierung?
Der Markt ist noch zu sehr im Fluss, als dass man eine baldige Standardisierung erwarten könnte. Das Angebot an Open-Source- und kommerziellen Lösungen ist inzwischen nahezu unüberschaubar. Neben wirklich neuen und innovativen Lösungen erhält so manches lange verfügbare Produkt auch einen eiligen „Big Data-Anstrich“, wodurch die Landschaft noch unübersichtlicher wird. Auf lange Sicht wird es aber zu einer Konsolidierung kommen.
eStrategy: „Big Data“ in der Praxis – können Sie uns Beispiele nennen?
Der Finanzbereich profitiert beispielsweise von Big Data-Technologie bei der automatischen Betrugserkennung in Kreditkartentransaktionen. Mit neuen sogenannten „In-Memory“-Technologien ist es möglich, die riesigen Datenvolumina effizient und automatisiert nach neu auftauchenden Betrugsmustern zu durchsuchen. Eine entsprechende, vom Fraunhofer IAIS entwickelte, Technologie ist bereits bei Banken im Einsatz. Im Bereich der Social Media-Analyse haben wir eine Software entwickelt, welche mit intelligentem Text-Mining die vielen Millionen Postings eines Forums von Automobilnutzern analysiert und daraus Emotionen zu Automarken extrahiert. Nützlich ist das beispielsweise für Automobilhersteller zum Trendmonitoring. Und im öffentlichen Bereich entwickeln wir in einem Forschungsprojekt zusammen mit Anwendungspartnern gegenwärtig Werkzeuge, die Twitter-Nachrichten und andere Social Media-Daten mit intelligenten Text-Mining-Verfahren in Echtzeit analysieren, um sich frühzeitig ein Lagebild von einer Katastrophe machen zu können.
Fazit
Die größte Herausforderung von Big Data ist es, relevante Daten für eine effizientere Geschäftsstrategie zu erkennen. Meist ist es jedoch komplex, Informationen aus unübersichtlichen Datensammlungen herauszufiltern. Unternehmen stehen so zukünftig vor wettbewerbskritischen Herausforderungen.

Autor
Dominik Haller, M.A.
Der studierte Kommunikationswissenschaftler arbeitet als Online Marketing Manager bei der TechDivision GmbH – einer der führenden Magento-, TYPO3- und E-Commerce-Agenturen im deutschsprachigen Raum. Darüber hinaus ist er als leitender Redakteur des eStrategy Magazins für Hintergrundrecherchen rund um das Thema E-Commerce, Online Marketing, E-Recht, etc. zuständig. Neben seiner beruflichen Tätigkeit bei der TechDivision GmbH engagiert er sich auch als Lehrbeauftragter an der Universität Salzburg.